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Abstract. In a bounded-synapses version of Hopfield’s model for neural networks the 
quasienergy of a given memory, which is approximately equal to the depth of the corre- 
sponding energy well, is calculated exactly by treating the change of a synaptic strength 
on learning as a random walk within bounds. Attractors corresponding to stored memories 
are found to be considerably flattened before serious retrieval errors arise. This allows 
dream sleep to be interpreted as random recall and relearning of fresh strong memories, 
in order to stack them on top of weak incidental memory imprints of a day. 

The Little-Hopfield model (Little 1974, Hopfield 1982) initiated an explosive develop- 
ment of physically motivated neural network models, aimed mainly at simulating the 
associative memory of the human brain and providing a means to transplant it into 
artificial intelligence. The Little-Hopfield model is based on a quasispin representation 
of the state of a neural network (McCulloch and Pitts 1943): memories to be stored 
are encoded into binary sequences (patterns) of quasispin variables S, = *l ,  physically 
realised as firing or non-firing neurons in a network ( i  = 1, .  . . , N for N neurons). 
Such a sequence can be regarded as an N-component vector { S } .  Patterns represented 
by such vectors are stored if they are made attractors of the spin-flip dynamics, which 
is governed by the signs of the sums ZJ  Jl,S,, where the coupling constants JI, are called 
synaptic strengths. The latter are of both signs, which endows the system with spin- 
glass-like properties; in particular, the possibility of having many attractors. According 
to Hebb’s mechanism (Hebb 19491, turning given patterns into attractors can be 
achieved by appropriate modifications of the synaptic strengths J,, (‘learning 
algorithms’). 

The learning algorithm used by Hopfield has a major drawback (Hopfield 1982, 
Amit et a1 1987): if the number p of stored patterns passes above a sharp bound 
p c  = a,N where N is the number of fully interconnected neurons in the network and 
a,= 0.14, then the memory abruptly collapses and no stored information can be 
retrieved any more. This can be avoided if one makes the synaptic strength bounded 
(‘learning within bounds’): IJ,IsA (Parisi 1986, Nadal et a1 1986, also hinted at by 
Hopfield (1982)). Then freshly learned memories gradually erase the older ones, and 
the whole memory can be visualised as a stack with fresh patterns above, and with 
increasingly deteriorated older ones as we go downwards. A memory organised in this 
way is called a palimpsest (Nadal et a1 1986). 

The present letter gives some new insight into the change of attractors of the older 
memories. In particular, their flattening and its role in making them unstable is 
emphasised. The results of our analysis are used to offer a modified and perhaps more 
realistic version of a proposed explanation of dream sleep by Crick and Mitchison 
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(1983) and Hopfield et a/ (1983) who suggested that dream sleep may serve to eliminate 
spurious (parasitic) memories, by means of (i)  retrieving them by generating random 
initial states and letting the system relax to the closest attractor, and ( i i )  weakening 
them by unlearning, i.e. opposite-to-Hebbian synaptic changes. Although generation 
of highly chaotic and possibly random states in dream sleep seems to be real (Babloyantz 
et aI 1985, Dvorak and Siska 1986, Mayer-Kress and Layne 1986), no evidence has 
been found for unlearning since 1983. Besides, spurious memories seem to be easy to 
escape by including thermal noise or smooth threshold conditions in  the relaxation 
process. 

We start with blank synapses of strengths 0 (actually, in view of ergodicity of the 
learning process, any symmetric matrix of 
give the same results); then teach a new 
bounded synaptic modification algorithm 

z =Jtd+ N-1/2&6j 

JYw =z 
if IzI s A 
otherwise. 

initial strengths within the bounds would 
pattern {t} (6; = *l,  i = 1 , .  . . , N )  by the 

This is roughly (if A is a multiple of N-''2 then exactly) equivalent to Parisi's (1986) 
algorithm. Like the one used by Hopfield (1982), it gives rise to a symmetric matrix 
of synaptic strengths: Jij = A i .  This symmetry of the coupling constants, which is a 
biologically non-realistic feature of this class of models, allows one to define an 
energy-like function 

of the configuration. Learning is achieved since the patterns taught approximately 
minimise E {  S} with respect to nearby configurations, i.e. become approximate centres 
of wells on the energy surface in the space of configurations. Memories stored in this 
way can be retrieved since under single-spin-flip dynamics at temperature T=O the 
system evolves towards such energy minima. With thermal noise ( T # 0) spurious 
memories, represented by high-lying local minima, are escaped and only deep energy 
wells act as efficient attractors. 

As observed by Parisi (1986) and Nadal et a/ (1986), the so-called retrieval 
probability, i.e. the probability of faithfully associating a stored pattern to the memory 
imprint it leaves, starts to drop as some 0.02N new patterns are taught subsequently 
to the network and becomes negligible after 0.07 N new patterns. We want to demon- 
strate that the sooner this drop of retrieval probability becomes apparent, the probability 
of retrieving the same pattern from a random initial state already drops to practically 
nothing, due to a considerable loss of depth of the corresponding potential well. This 
feature is the basis of the explanation of dream sleep proposed below. 

To demonstrate this property, we observe that as far as the retrieval probability of 
a given pattern {,$')} is still close to unity after having taught t more patterns to the 
network, the corresponding potential well is essentially not displaced from the pattern, 
and its depth can be approximated by the mean value of the energy in the pattern 
configuration, E,( f )  = f N (  N - 1)B( t ) ,  where B( t )  is obtained from the projection of 
any synaptic strength onto {t'''}, 

by averaging over possible sequences of the stored patterns up to (6'"') and t more, 
which determine Jij through algorithm (1).  This can be done exactly as follows. B,, 

E . .  V = J..,$o'6!o' V I  J (3) 



Letter to the Editor L1301 

according to algorithm (l) ,  assumes values N-'"s(s = - M, . . . , +M where M = integer 
part of N'"A),  with probabilities p.; over which the averaging has to be taken. Let 
the stored patterns { ('"} be statistically independent random binary sequences, one 
being taught at each integer time. By algorithm (1) this implies a bounded random 
walk of Bo on its 2M + 1 possible values, with the simple law of evolution 

If teaching of patterns is started at some large negative initial time, then at, say, 
2 = -1 we have a uniform distribution ps = ( 2 M +  l ) - '  for all s. Then teaching the 
distinguished pattern {['o'} at t = 0 turns this into 

Now it is straightforward to solve equation (4) by numerical iteration to t > O  and 
calculate the mean value B( t )  of B,, from which Eo( t )  can be obtained (see the full 
curve in figure 1). 

We have repeated Parisi's (1986) simulations for N = 200 neurons to evaluate the 
final energy to which the system relaxes at T = 0 from the initial configuration 
subsequent to which t more patterns had been memorised. As seen from figure 1, a 
30% reduction of the energy depth, i.e. a considerable flattening of the corresponding 

A 
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Figure 1. Forgetting for 200 neurons. Upper part: reduction of the probability of retrieval 
from the pattern {5""} (A, simulations by Parisi (1986)) and from a random initial 
configuration (histogram). Lower part: reduction of [ E , , ( f )  (full curve) and mean final 
energy after relaxation from a pattern after which f more had been taught (W). 
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potential well is observed before the final state (full squares) begins to deviate from 
the initial one (full curve) to any considerable extent. 

The loss of depth of the ageing memory is accompanied by a drastic reduction of 
the probability of being retrieved from a random initial configuration. Our correspond- 
ing simulation results are shown in the histogram of the upper half of figure 1 .  For 
comparison we include Parisi’s data (open triangles) on the ‘retrieval probability’ 
defined as the probability of 98% agreement between pattern and  minimum energy 
configurations. 

Let us now discuss briefly what happens to older memories for which the retrieval 
probability has been considerably reduced. As seen in the lower-right part of figure 
1,  starting from such long-ago-learned patterns the system relaxes to remote final 
configurations of deeper energy values. In some 86% of the cases these final configur- 
ations can be identified as some of the fresh memories, against which the older ones 
become unstable, letting the flow leak into the deep energy wells before the old patterns 
might get noisy. In this picture the fact that for large N the retrieval probability is a 
scaling function of the variable x = t /  N is explained by the diffusion constant D = 1/ N 
of the random walk of the synaptic strength. More details about this will be published 
subsequently. It should be mentioned that a random walk treatment similar to ours 
has been applied to a solvable model with asymmetric diluted synapses by Derrida 
and  Nadal (1987). 

The distinction between associative recall of the stored patterns, controlled by 
leakage from wells that just keep the flow or not, and retrieval from random initial 
states, in which nothing but the freshest and deepest energy wells are competitive, is 
the basis of our modified interpretation for dream sleep. We suggest that a possible 
aim of sleeping dreams is to eliminate unintentionally stored weak memory imprints 
of whatever you see and  hear during the day. These have shallow energy minima but 
can be retrieved associatively (starting sufficiently close to them), and they occupy 
much of the retrievable capacity of the memory. On the contrary, what you wanted 
to learn leaves deep energy wells. 

The elimination of weak incidental memories can then happen by ( i )  generating 
random initial states from each of which the system relaxes to one of the strong fresh 
memories, and (ii) a memory retrieved in this way is relearned (not unlearned!) by 
the usual Hebbian mechanism and thereby put on top  of the stack above those more 
recent but much weaker accidental memories which are not recalled nor relearned 
during this sequence of events. Therefore such weak memories are subject to forced 
‘ageing’ and  are eliminated from the memory sooner than would happen without this 
(conjectured) action of dream sleep. 

The proper context for this mechanism may be a filtering of what would be 
transferred from a medium-term (about one day) memory to long-term storage. A 
prediction perhaps testable in real-life experiments (Gardner-Medwin 1987) is the 
weakening of weak memories during the sleeping period. 

It is a pleasure to thank J Kertesz, I Kondor and  T Til for helpful comments and  
suggestions on a preliminary version. 

References 

Amit D J,  Gutfreund H and Sompolinsky H 1987 Ann. fhys., N Y  173 30 
Babloyantz A, Salazar J M and Nicolis C 1985 fhys. Lerr. l l l A  152 



Letter to the Editor L1303 

Crick F and Mitchison G 1983 Nature 304 1 1 1  
Derrida B and Nadal J P 1987 J.  Stat. Phys. in press 
Dvorak I and Siska J 1986 Phys. Lett. l l8A 63 
Gardner-Medwin A R 1987 private communication 
Hebb D 0 1949 The Organization of Behaviour (New York: Wiley) 
Hopfield J J 1982 Proc. Narl Acad. Sci. USA 79 2554 
- 1984 Proc. Natl Acad. Sci. U S A  81 3088 
Hopfield J J,  Feinstein D I and Palmer R G 1983 Nature 304 158 
Little W A 1974 Math. Biosci. 19 101 
Mayer-Kress G and Layne S 1986 Proc. Conj  on Perspecfives in Biological Dynamics and Theoretical Medicine, 

Bethesda, M A  (New York: New York Academy of Sciences) to be published 
McCulloch W S and Pitts W 1943 Bull. Math. Biophys. 5 115  
Nadal J P, Toulouse G, Changeux J P and Dehaene S 1986 Europhys. Left. 1 535 
Parisi G 1986 J. Phys. A :  Math. Gen. 19 L617 


